National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Functionalized hyper-cross-linked porous polyacetylenes
Havelková, Lucie
An atom-economic one-step chain-growth coordination homopolymerization providing high yields of functionalized hyper-cross-linked polyacetylenes with permanent micro/mesoporous texture and specific surface area up to 1062 m2 /g was introduced and optimized. Substituted 1,3-diethynylbenzenes served as monomers simultaneously providing functionalization and hyper-cross-linking of the networks. The homopolymerization was compatible with the heteroatom groups of the monomers and allowed to prepare polyacetylene networks with the wide spectrum of univalent functional groups: -F, -Cl, -Br, -NO2, -COOCH3, -CH2OH, -COOH and -CH=O decorating the aromatic segments of the networks in a high extent (7.87 mmol/g). A novel two-step synthesis of functionalized hyper-cross-linked polyacetylenes was introduced combining chain-growth coordination polymerization of acetylenic monomers and covalent templating using acetal and Schiff base protecting groups. By postpolymerization hydrolytic removal of the protecting segments from the primary networks, the networks with a high content (up to 9.61 mmol/g) of univalent functional groups -CH2OH, -CH=O and -NH2 were prepared. These groups were placed either on the cross-linking or linear (aromatic and aliphatic) network segments, even in the vicinity of the main...
Functionalized hyper-cross-linked porous polyacetylenes
Havelková, Lucie ; Sedláček, Jan (advisor) ; Brožek, Jiří (referee) ; Balcar, Hynek (referee)
An atom-economic one-step chain-growth coordination homopolymerization providing high yields of functionalized hyper-cross-linked polyacetylenes with permanent micro/mesoporous texture and specific surface area up to 1062 m2 /g was introduced and optimized. Substituted 1,3-diethynylbenzenes served as monomers simultaneously providing functionalization and hyper-cross-linking of the networks. The homopolymerization was compatible with the heteroatom groups of the monomers and allowed to prepare polyacetylene networks with the wide spectrum of univalent functional groups: -F, -Cl, -Br, -NO2, -COOCH3, -CH2OH, -COOH and -CH=O decorating the aromatic segments of the networks in a high extent (7.87 mmol/g). A novel two-step synthesis of functionalized hyper-cross-linked polyacetylenes was introduced combining chain-growth coordination polymerization of acetylenic monomers and covalent templating using acetal and Schiff base protecting groups. By postpolymerization hydrolytic removal of the protecting segments from the primary networks, the networks with a high content (up to 9.61 mmol/g) of univalent functional groups -CH2OH, -CH=O and -NH2 were prepared. These groups were placed either on the cross-linking or linear (aromatic and aliphatic) network segments, even in the vicinity of the main...
Synthesis and polymerization of substituted derivatives of caprolactone
Vrbata, David ; Zedník, Jiří (advisor) ; Smrček, Stanislav (referee)
Copper (I) mediated Huisgen 1,3 dipolar cycloaddition of 4-(piperidine-1-yl)-N-(prop-1-yne- 3-yl)-1,8-naphtalimide (PN) to poly(αN3εCL-co-εCL) of three different molar ratio of αN3εCL was performed. Reaction was succesfull for poly(αN3εCL-co-εCL) with molar fraction of αN3εCL f = 0,22. No degradation of substituted PCL was observed during the synthetic path, therefore the PN molecule is suitable for click coupling to well defined polyester. New aliphatic polyester based on polycaprolactone was synthesized and characterized by means of 1 HNMR spectra and Gel permeation chromatography calibrated with polystyrene standards. The spectra of other two copolymers coupled with PN were not measured due to their low solubility in common organic solvents. Keywords: living polymerization, α-chloro-ε-caprolactone, click reaction
Preparation of functionalized polyacetylenes with linear and cross-linked architecture
Havelková, Lucie ; Sedláček, Jan (advisor) ; Balcar, Hynek (referee)
The phenylacetylene type monomers with benzene ring substituted with one or two aldehyde groups (besides an ethynyl group) were efficiently polymerized into linear mostly high-molecular-weight polyacetylenes with aldehyde groups in pendants if the complex [Rh(NBD)acac] was used as the polymerization catalyst. To achieve high yield and molecular weight of the polymer the positioning of the aldehyde group to meta position with respect to the ethynyl group was most appropriate. It was confirmed that polyacetylenes with aldehyde groups were modifiable by a reaction with p-toluidine under formation of Schiff base type pendant groups. 1,3-Diethynylbenzenes with various substituents in position 5 on the ring (R = H, F, Cl, Br, HCO, NO2, COOCH3) were efficiently polymerized with [Rh(NBD)acac] catalyst into microporous or micro/mesoporous polyacetylene networks that exhibited specific surface area from 311 to 1146 m2 /g. In the case of the networks with HC=O groups, the positive effect of these groups was confirmed on the capacity of the network in CO2 and methanol vapor capture. The composition and texture of the networks possessing HC=O groups were partly reversibly modifiable in reaction with p-toluidine.
Substituted polyacetylenes with aldehydic groups: preparation and postpolymerization modification
Zhernakova, Yulia ; Sedláček, Jan (advisor) ; Faukner, Tomáš (referee)
Homopolymerization of 3-ethynylbenzaldehyde, 4-ethynylbenzaldehyde and 1- ethynylbenzene-3,5-dicarbaldehyde and copolymerization of these monomers with phenylacetylene have been studied with the aim to prepare soluble homo and copolymers of polyacetylene type with aldehyde groups in pendants. The Rh(I) complexes have been demonstrated to be efficient catalysts of these polymerizations. The solubility of homopolymers prepared was controlled by the symmetry/non-symmetry of the substitution of pendant phenyl groups of the monomeric units. Non-symmetrically substituted 3-ethynylbenzaldehyde provided soluble homopolymer, on the other hand symmetrically substituted 4-ethynylbenzaldehyde and 1- ethynylbenzene-3,5-dicarbaldehyde gave insoluble homopolymers: the insolubility of these homopolymers most probably reflected a tight packing of symmetrically substituted polymer chains in the solid phase. 3-Ethynylbenzaldehyde, 4-ethynylbenzaldehyde and 1-ethynylbenzene- 3,5-dicarbaldehyde when copolymerized with phenylacetylene yielded soluble binary copolymers with a tuneable composition. The polymerizability of 3-ethynylbenzaldehyde and 1- ethynylbenzene-3,5-dicarbaldehyde was close to that of phenylacetylene. However, 4- ethynylbenzaldehyde exhibited about half the polymerizability than phenylacetylene....
Synthesis of microporous polymer networks with azomethine links
Hašková, Alena ; Sedláček, Jan (advisor) ; Balcar, Hynek (referee)
A series of following Schiff base type monomers with two terminal ethynyl groups and one or two azomethine groups have been synthesized: N-(4-ethynylbenzylidene)(4-ethynylaniline), positional isomers of N,N'-(1,4-phenylene)bis(1-(ethynylphenyl)methanimine) and positional isomers of 1,1'-(1,4-phenylene)bis[(N-ethynylphenyl)methanimine]. These monomers have been successfully polymerized in chain-growth mode with the use of [Rh(NBD)acac] as the coordination catalyst into densely cross-linked polyacetylene networks with micro/mesoporous texture and specific surface in hundreds of m2 /g. The positive correlation between the conversion of ethynyl groups and specific surface area on one hand and the increase in reaction temperature and reaction time on the other side was proven. Varying the composition and architecture of polymerized monomers affected particularly the distribution of micropores and mesopores in the networks. The postpolymerization modification of poly[N-(4-ethynylbenzylidene)(4- ethynylaniline)] network has been performed consisting in a partial releasing the links connecting the linear segments of the network. It was confirmed that despite this modification the network preserved the micro/mesoporous texture.
Preparation of functionalized polyacetylenes with linear and cross-linked architecture
Havelková, Lucie ; Sedláček, Jan (advisor) ; Balcar, Hynek (referee)
The phenylacetylene type monomers with benzene ring substituted with one or two aldehyde groups (besides an ethynyl group) were efficiently polymerized into linear mostly high-molecular-weight polyacetylenes with aldehyde groups in pendants if the complex [Rh(NBD)acac] was used as the polymerization catalyst. To achieve high yield and molecular weight of the polymer the positioning of the aldehyde group to meta position with respect to the ethynyl group was most appropriate. It was confirmed that polyacetylenes with aldehyde groups were modifiable by a reaction with p-toluidine under formation of Schiff base type pendant groups. 1,3-Diethynylbenzenes with various substituents in position 5 on the ring (R = H, F, Cl, Br, HCO, NO2, COOCH3) were efficiently polymerized with [Rh(NBD)acac] catalyst into microporous or micro/mesoporous polyacetylene networks that exhibited specific surface area from 311 to 1146 m2 /g. In the case of the networks with HC=O groups, the positive effect of these groups was confirmed on the capacity of the network in CO2 and methanol vapor capture. The composition and texture of the networks possessing HC=O groups were partly reversibly modifiable in reaction with p-toluidine.
Synthesis and polymerization of substituted derivatives of caprolactone
Vrbata, David ; Zedník, Jiří (advisor) ; Smrček, Stanislav (referee)
Copper (I) mediated Huisgen 1,3 dipolar cycloaddition of 4-(piperidine-1-yl)-N-(prop-1-yne- 3-yl)-1,8-naphtalimide (PN) to poly(αN3εCL-co-εCL) of three different molar ratio of αN3εCL was performed. Reaction was succesfull for poly(αN3εCL-co-εCL) with molar fraction of αN3εCL f = 0,22. No degradation of substituted PCL was observed during the synthetic path, therefore the PN molecule is suitable for click coupling to well defined polyester. New aliphatic polyester based on polycaprolactone was synthesized and characterized by means of 1 HNMR spectra and Gel permeation chromatography calibrated with polystyrene standards. The spectra of other two copolymers coupled with PN were not measured due to their low solubility in common organic solvents. Keywords: living polymerization, α-chloro-ε-caprolactone, click reaction

Interested in being notified about new results for this query?
Subscribe to the RSS feed.